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Orthomodular Lattices of Subspaces Obtained
from Quadratic Forms

J. C. Carréga and R. Mayet1

Being given a field K of characteristic different from 2 and 3, a 3-dimensional vector
space E over K , and a nonsingular symmetric bilinear form ϕ over E , we define
a structure of orthomodular lattice T (E , ϕ) on the set of all nonisotropic subspaces
of E .

We give a structure Theorem about the irreducible and 3-homogeneous subalge-
bras of T (E , ϕ). In particular, these subalgebras are all of the form T (E ′, ϕ′) where E ′
is a 3-dimensional subspace of E , if E is regarded as a vector space over a subfield K ′
of K , and ϕ′ is induced by ϕ.

This structure Theorem allows us to achieve an old project, concerning minimal
orthomodular lattices (an orthomodular lattice L is called minimal if it is nonmodular
and if all its proper subalgebras are either modular, or isomorphic to L).
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1. THE MODULAR LATTICE L(E, ϕ)

Let K be any field of characteristic different from 2 and 3.
Let E be a 3-dimensional vector space over K .
Let ϕ : E × E → K be a non singular symmetric bilinear form and Q : E →

K the quadratic form associated to ϕ.
Two vectors u, v in E are said to be ϕ-orthogonal, which is denoted by

u ⊥ v , if ϕ(u, v) = 0. For any subspace M of E , the set {u ∈ E |∀v ∈ M, u ⊥ v}
is a subspace of E denoted by M⊥.

We denote by L(E , ϕ) the modular lattice of all subspaces of E equipped
with the map M 
→ M⊥.

The elements of L(E , ϕ) are {0}, E , the 1-dimensional subspaces K u (atoms
of L(E , ϕ)), and the 2-dimensional subspaces (K u)⊥ (co-atoms of L(E , ϕ)).

The modular lattice L(E , ϕ) is a projective plane, and the map M 
→ M⊥ is
the polarity with respect to a conic.
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The lattice operations on L(E , ϕ) are defined by:

SupL (M1, M2) = M1 + M2

I n fL (M1, M2) = M1 ∩ M2

The polarity M 
→ M⊥ is (by definition) involutive and decreasing. It follows that
the de Morgan laws are satisfied in L(E , ϕ) :

(M1 + M2)⊥ = M⊥
1 ∩ M⊥

2

(M1 ∩ M2)⊥ = M⊥
1 + M⊥

2

2. THE ORTHOMODULAR LATTICE T(E, ϕ)

In the general case, the polarity M 
→ M⊥ is not an orthocomplementation
on the lattice L(E , ϕ), since some subspaces M can be isotropic. Let us remind
the definition of an isotropic subspace.

A nonzero vector u ∈ E is called isotropic if Q(u) = 0.
A subspace M ∈ L(E , ϕ) is called isotropic if it is nonzero and the restriction

of ϕ to M × M is singular, that is to say if M ∩ M⊥ �= {0}.
Actually, a subspace M of L(E , ϕ) is isotropic if either it is of the form Kω

where ω is an isotropic vector, or of the form (Kω)⊥ where ω is isotropic.
We note that if M is an atom (resp. a co-atom) of L(E , ϕ), then M is isotropic

if and only if M ⊆ M⊥ (resp. M⊥ ⊆ M).
Let us denote by T (E , ϕ) the set of all nonisotropic subspaces of E . In the

general case, the set T (E , ϕ) is not a sublattice of L(E , ϕ). However, when ordered
by inclusion, it is a lattice whose operations are defined as follows :

M1 ∨ M2 =
{

M1 + M2 if M1 + M2 is nonisotropic

E if M1 + M2 is isotropic

M1 ∧ M2 =
{

M1 ∩ M2 if M1 ∩ M2 is nonisotropic

{0} if M1 ∩ M2 is isotropic

Moreover, the map M 
→ M⊥ is an orthocomplementation on T (E , ϕ), and,
in particular, the de Morgan laws are satisfied in T (E , ϕ).

Lemma 2.1.

1. Each plane in L(E , ϕ) contains at least six atoms and contains at most
two isotropic atoms.

2. Each nonisotropic atom of L(E , ϕ) is contained at least in four non-
isotropic planes.
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Proof:

1. Since the characteristic of K is different from 2 and 3, the cardinality of
K is at least 5, hence each 2-dimensional subspace of E contains at least
six 1-dimensional subspaces.

Let P be a plane (i.e., a 2-dimensional subspace) of E . Assume
that each element of P is isotropic. Then, from the identity Q(u + v) =
Q(u) + Q(v) + 2ϕ(u, v), it follows that any u ∈ P belongs to P⊥, hence,
as P⊥ is 1-dimensional, K u = P⊥, which is a contradiction. It follows
that there exists at least one nonisotropic atom in P .

Let K u be a nonisotropic atom in P , and let v be a vector in P
which is not colinear with u. For each atom K w �= K u in P , there exists
a unique λ ∈ K such that K w = K (λu + v). This atom K w is isotropic
iff Q(λu + v) = λ2 Q(u) + 2λϕ(u, v) + Q(v) = 0. This equation has at
most two solutions, hence there exists at most two isotropic atoms
in P .

2. Let K u be a nonisotropic atom in L . The map P 
→ P⊥ is one-to-one from
the set of all nonisotropic planes containing K u onto the set of nonisotropic
atoms in (K u)⊥. It follows from 1. that there exist at least four nonisotropic
planes containing the atom Ku.

�

Theorem 2.2.

1. (T (E , ϕ), ⊆, ⊥) is an orthomodular lattice.
2. The following are equivalent:

a) T (E , ϕ) is modular
b) T (E , ϕ) = L(E , ϕ)
c) the bilinear form ϕ is anisotropic (in other words, it admits none

isotropic vector).
3. The orthomodular lattice T (E , ϕ) is irreducible and 3-homogeneous (this

means that each of its blocks has exactly 3 atoms).

Proof:

1. J. Flachsmeyer (1995) has proved (in the more general case where E is any
finite dimensional vector space over K ), that T (E , ϕ) is an orthomodular
poset. However, let us give the proof in this particular case. We need only
prove that if u, v are nonzero and nonisotropic vectors of E , K u ⊂ (K v)⊥

implies (K u)⊥ ∧ (K v)⊥ �= 0. This is equivalent to : u ⊥ v implies that
K u + K v is not isotropic.

Assume that u ⊥ v and K u + K v is isotropic. Then there exists an
isotropic vector ω such that ω ⊥ u and ω ⊥ v , hence both u and ω belong
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to (K v)⊥ ∩ (Kω)⊥ which is 1-dimensional. We obtain that u and ω are
colinear, hence a contradiction since ω is isotropic and u is not isotropic.

2. It is obvious that b) implies a) and that b) and c) are equivalent.
In order to prove that a) implies b), assume T (E , ϕ) �= L(E , ϕ), and

let us prove that T (E , ϕ) is not modular. There exists an isotropic vector ω

in E . By the Lemma above, there exist two nonisotropic atoms K u, K v in
the plane (Kω)⊥, and there exists a nonisotropic plane P such that K u ⊆ P
and K v �⊆ P . Then we have K u ⊂ P , (K u ∨ K v) ∧ P = E ∧ P = P ,
and K u ∨ (K v ∧ P) = K u ∨ {0} = K u �= P , which shows that T (E , ϕ)
is not modular.

3. It follows from the previous Lemma that a 2-dimensional subspace of E is
not an atom of T (E , ϕ), hence any atom of T (E , ϕ) is 1-dimensional. Now,
let B be the set of all atoms of a block of T (E , ϕ). Then, the elements of B
are 1-dimensional subspaces of E , pairwise orthogonal, whose supremum
in T (E , ϕ) is E . By the part 1. of this proof, if K u and K v are two
atoms of B, then K u + K v is nonisotropic, hence K u ∨ K v = K u + K v
is 2-dimensional. This shows that B cannot be 2-element and, as E is
3-dimensional, it follows that B is 3-element.

As T (E , ϕ) is of height 3, if T (E , ϕ) is not irreducible, it is isomorphic
to an orthomodular lattice of the form T1 × T2 where T1 and T2 are of
heights 1 and 2, hence are modular. It follows that T (E , ϕ) is itself modular,
hence ϕ is anisotropic, and it is well known that, in this classical case,
T (E , ϕ) = L(E , ϕ) is irreducible, which is a contradiction. �

3. ON THE SUB-ORTHOMODULAR LATTICES OF T(E, ϕ)

Let K ′ be a subfield of K . By definition, an orthogonal basis e = (e1, e2, e3)
of E is said to be K ′-closed if there exists α ∈ K , α �= 0, such that, for i = 1, 2, 3,
αQ(ei ) ∈ K ′.

Under these conditions, if E ′ is the K ′-subspace of E (i.e., the linear subspace
of E when E is regarded as a vector space over K ′) generated by the basis e, and
ϕ′ is the restriction to E ′ × E ′ of αϕ, then ϕ′ is a nonsingular symmetric bilinear
form over E ′, called the form induced by ϕ on E ′ (which is defined up to a constant
factor in K ′).

Our main result is the following stucture Theorem about subalgebras of
T (E , ϕ).

Theorem 3.3.

1. Direct part.
Let K ′ be a subfield of K and let e = (e1, e2, e3) be a K ′-closed

orthogonal basis of E.
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Let E ′ be the K ′-subspace of E generated by e and let ϕ′ be the
symmetric bilinear form induced by ϕ on E ′.

Then T (E ′, ϕ′) is isomorphic to a subalgebra of T (E , ϕ).
More precisely, the map which assigns to any M in T (E ′, ϕ′) the K -
subspace of E generated by M is an injective homomorphism of ortho-
modular lattices from T (E ′, ϕ′) to T (E , ϕ).
Moreover, we remark that T (E ′, ϕ′) is irreducible and 3-homogeneous.

2. Converse part.
Let T ′ be an irreducible and 3-homogeneous subalgebra of T (E , ϕ).
Then there exist:
• a subfield K ′ of K ,
• a K ′-closed orthogonal basis e = (e1, e2, e3) of E such that, if E ′ is the

K ′-subspace of E generated by e , and ϕ′ the bilinear form induced by
ϕ on E ′, then T ′ is isomorphic to T (E ′, ϕ′).

Proof of the direct part: Let α ∈ K , α �= 0, such that ϕ′ is the restriction of
αϕ to E ′ × E ′, and let h : L(E ′, ϕ′) 
→ L(E , ϕ) be the mapping which assigns to
any M ∈ L(E ′, ϕ′) the K -subspace of E generated by M .

We notice that if M is the K ′-subspace of E ′ generated by a list s of vectors,
then h(M) is the K -subspace of E generated by s. Now, let us suppose that s
is a basis of M . Then s can be expanded to a basis e′ = (e′

1, e′
2, e′

3) of E ′. The
determinant of (e′

1, e′
2, e′

3) relative to the basis e of E ′ is nonzero, hence, as e is a
basis of the K -space E , it follows that e′ is also a basis of the K -space E . Thus,
the vectors of s are linearly independent in E , hence s is a basis of the K -space
h(M). This proves that h preserves the dimension, and also that M = E ′ ∩ h(M),
which shows that h is one-to-one.

Let us denote respectively by ⊥ and ⊥′ the polarities of L(E , ϕ) and L(E ′, ϕ′).
Let K ′u be any atom of L(E ′, ϕ′), and let (v , w) be a basis of (K ′u)⊥

′
. Then

(v , w) is a basis of the K -space h((K ′u)⊥
′
). Since v , w belong to (K u)⊥, whose

dimension is 2, and are independent vectors of E , (v , w) is a basis of (K u)⊥, and
we conclude that h((K ′u)⊥

′
) = (K u)⊥ = (h(K ′u))⊥. It follows easily that, for any

M ∈ L(E ′, ϕ′), h(M⊥′
) = (h(M))⊥.

An easy consequence of the definition of h is that, for any M, N ∈ L(E ′, ϕ′),
h(M + N ) = h(M) + h(N ), and, by the de Morgan laws, we infer that h is a lattice
homomorphism from L(E ′, ϕ′) to L(E , ϕ).

It is obvious that for any atom K ′u of L(E ′, ϕ′), K ′u is isotropic iff h(K ′u) =
K u is an isotropic atom of L(E , ϕ). It follows that, for any M ∈ L(E ′, ϕ′), h(M) is
isotropic iff M is isotropic, and in particular that, for any M ∈ T (E ′, ϕ′), h(M) ∈
T (E , ϕ).

Let g be the mapping from T (E ′, ϕ′) to T (E , ϕ) defined by g(M) = h(M).
If M, N ∈ T (E ′, ϕ′), then M + N is an isotropic subspace of E ′ iff h(M +

N ) = h(M) + h(N ) = g(M) + g(N ) is an isotropic subspace of E . It follows
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that g(M ∨ N ) = g(M) ∨ g(N ) (the l.u.b. being taken resp. in T (E ′, ϕ′) and in
T (E , ϕ)), and, by the de Morgan laws, that g is an (injective) homomorphism of
orthomodular lattices from T (E ′, ϕ′) to T (E , ϕ).

Remarks

1. The converse part of Theorem 2 is much more long and difficult to prove.
In its proof we use:
• the coordinatization Theorem for Arguesian projective planes,
• the distance between an atom and a block of an orthomodular lattice,
• the algebraic closure K ∗ of K and the embedding of the K-space E

into a 3-dimensional K ∗-space E∗ equipped with a bilinear form ϕ∗

inducing ϕ on E .
• classical methods of projective geometry.

2. If T ′ satisfies the hypothesis of the converse part, the following sentences
are equivalent:
a) T ′ is a modular lattice
b) the bilinear form ϕ′ is anisotropic
c) T ′ is a sublattice of L(E , ϕ).
For example, these conditions are satisfied in the case where K is the field C
of complex numbers, E = C3, ϕ((x , y, z), (x ′, y′, z′)) = xx ′ + yy′ + zz′,
K ′ is the field of real numbers, E ′ = R3, and ϕ′ is the restriction of ϕ to
E ′. In this case, ϕ is not anisotropic, thus T (E , ϕ) is nonmodular, but ϕ′

is anisotropic, hence T (E ′, ϕ′) is modular.
3. Theorem 2 does not work if the field K is of characteristic 3.

Indeed, if K = F3 (the 3-element field), and E = F3
3 then T (E , ϕ)

does not depend (up to isomorphism) on the choice of the nonsingular bi-
linear form ϕ. The Greechie diagram of this orthomodular lattice is given
in Fig. 1. The black atoms in this diagram, and the three blocks containing
these atoms constitute the diagram of a proper, irreducible, 3-homogeneous

Fig. 1.
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sub-orthomodular lattice of T (E , ϕ), which is not associated to a subfield
of K .

4. MINIMAL ORTHOMODULAR LATTICES

We recall that a nonmodular orthomodular lattice L is called minimal if all
its proper subalgebras are either modular or isomorphic to L . If L is finite, this is
equivalent to saying that all the proper subalgebras of L are modular. Recall that a
main interest of minimality comes from the fact that a finite orthomodular lattice T
is minimal if and only if the equational class generated by T covers an equational
class of the form [Mon], for some n ≥ 2 (where [Mon] denotes the equational
class generated by the finite orthocomplemented modular lattice Mon).

Theorem 2 provides infinitely many finite minimal orthomodular lattices, and
an infinite one.

1. Let us suppose that K is finite. It is well known that the cardinality q of
K is of the form q = pn , where p is a prime number. Here the conditions
on the characteristic of K show that p �= 2 and p �= 3.

If E is a 3-dimensional vector space over K , if ϕ1, ϕ2 are any two
nonsingular forms on E , and if Q1, Q2 are respectively the correspond-
ing quadratic forms, then there exists α in K such that Q1 and αQ2 are
equivalent.

This implies that orthomodular lattices T (E , ϕ1) and T (E , ϕ2) are
isomorphic. Hence, up to isomorphism, the orthomodular lattice T (E , ϕ)
depends only on the cardinality of K .

Moreover, it is easy to see that the previous result (concerning ϕ1

and ϕ2) allows us, for any subfield K ′ of K , to get a K ′-closed orthogonal
basis. It follows that the three following sentences are equivalent:
a) T (E , ϕ) is minimal,
b) n = 1,
c) q is a prime number.
and that, up to isomorphism, the minimal orthomodular lattice T (E , ϕ)
depend only on the cardinality of K .

So, we obtain, for each prime integer p ≥ 5 a finite minimal ortho-
modular lattice Tp. This completes the study presented with
Richard Greechie in Liptovsky Jan (Carrega et al., 2000), where we
had obtained these lattices only in the case where p is of the form
4k + 3.

2. As concern the fields of characteristic 2, it is still possible to construct,
by a slightly different way, the orthomodular lattice T (E , ϕ), and we have
already obtained in this way (Carrega (1998)) infinitely many finite min-
imal orthomodular lattices from finite fields of cardinal 2p, where p = 1
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or p is a prime number. We have in preparation a structure Theorem in
characteristic 2, similar to Theorem 2 above.

3. If K is the field Q of rational numbers, and E = Q3, the orthomodular
lattice T (E , ϕ) does not depend (up to isomorphism) on the choice of
the nonsingular and nonanisotropic form ϕ. This orthomodular lattice is
infinite and, as Q is a prime field, T (E , ϕ) is minimal.
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